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Abstract

This article presents a shrinking core model for the discharge of porous lead particle at the negative electrode of a lead-acid battery by considering
the reaction in a separate particle of the solid matrix. The model relates the shrinking unreacted lead core with the maximum amount of active material
that can be reacted before termination of the discharge process due to poorly soluble low-conducting product. The developed model equations
also incorporate the effect of double-layer capacitance and a dissolution–precipitation mechanism on the discharge process. The expressions for
evaluating concentration and potential distributions as functions of time and distance are presented in three different models of a porous lead
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article. For the simple case, equations are solved to achieve analytical expressions and where the coupled potential and concentration gradients
ith dissolution–precipitation mechanism are taken into account; the numerical method of lines is utilized to study the discharge behavior. The

imulation outcomes are in good agreement when compared with the experimental data for discharge.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Various idealized mathematical models have been proposed
o explain the operation of porous lead electrode because of
ts great importance as the negative electrode in the lead-acid
attery. The ultimate aim of such studies is the formulation of
model which can predict the performance of practical elec-

rodes. It is possible with such a model to optimize the design
f new cells, particularly cells for high-energy density or cells
ith a new configurations. In spite of the numerous investiga-

ions, that the porous lead electrode has been subjected to, there
s still a need for more knowledge on the basis of explanations
nd predictions of the electrode behavior. Due to the extreme
omplexity of the interacting effects of electrochemical kinet-
cs, structural changes and mass-transfer processes, it may not
e possible to find one single model that adequately describes
ts behavior. In fact, the research on lead-acid batteries will grow
or several more decades to come. The purpose of the present

∗ Corresponding author. Tel.: +91 4565 227555; fax: +91 4565 227779.

study is to advance the art of modeling the porous lead elec-
trode by combining a detailed fundamental model of a porous
electrode with the concept of unreacted-core shrinking.

A number of detailed fundamental models for lead-acid bat-
teries have been reported in the literature [1–17], and no attempt
has been made to provide an exhaustive review. These models are
typically one-dimensional, and include a detailed description of
the physical, chemical and electrical processes that take place in
the battery. Efforts in recent years have focused on modeling the
behavior of recombinant cells, which have become increasingly
important in commercial applications [18–20]. One can see that
some models are based on the search for analytical solutions
of the diffusion equation combined with an electrical circuit.
These models can give much insight into a system, which is
one of the primary objectives of modeling. The reason for this
is that analytical solutions are continuous in the independent
variables, and show explicitly how the parameters of the sys-
tem are involved. More recent models [21–24] heavily rely on
the solution of similar equation sets by means of digital simula-
tion. The latter permits us to study a large range of parameters
involved. The disadvantage, however, is that the results have to
E-mail addresses: vijayasekaranb@yahoo.com (B. Vijayasekaran),
asha@cecri.res.in (C.A. Basha).

be accepted more or less blindly, while their contribution to a
better understanding of the phenomena is minimal.

378-7753/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpowsour.2005.10.006
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Also most of these mathematical models are based on
a macroscopic approach or employ continuum models. This
involves numerical solution of model equations describing dis-
charge of the electrode or cell as a whole. Such phenomenolog-
ical methodologies inevitably make use of approximate fitting
parameters like the maximum degree of discharge. This does
yield valuable information on the discharge process, but using it
is impossible to study the effect of the porous active-material
behavior, the distribution of discharge parameters inside the
porous particle, the blocking, shrinking and critical radii, and
thus on the overall discharge process. Therefore, the introduc-
tion of new and more advanced applications of batteries has led
to an increasing need for simple mathematical models that are
able to simulate complicated discharge process.

The models presented here are simple and useful to gain a
physical understanding of the dynamic characteristics occur-
ring in the porous negative electrode of the lead-acid bat-
tery. The developed models are based on the principles of
chemical reaction engineering [25]. This considers the fluid-
particle electrochemical reaction in a separate grain of lead
and offers a simple method for calculating the characteristics
of discharge of an electrode plate. Moreover, while deriving
the shrinking core model, the effects of several parameters
including the double-layer effect are taken into account. In
general, non-Faradic phenomena play a very important role
in the time-dependent electrode potential and which predom-
i
r
e
L
t
a
i
t
m

d
c
d
t
(
p
t
o
t
t
s
l
I
t
[
c
c
t
D
s
a

PDEs [28]. This method is particularly helpful when analyzing
the behavior of a system with respect to time.

The purpose of these models is to give a qualitative analysis
rather than an exact, detailed description. Although the model is
applied to the lead-acid battery, the modeling approach appears
to be generally applicable to model constant-current discharg-
ing curve of other batteries, such as lithium-ion or metal-hydride
[29]. The rest of the article is organized as follows: the model
equations for different domains are derived in Section 2; in Sec-
tion 3 the numerical results are plotted with comparison to the
experimental data, thus providing a detailed insight into the elec-
trode operation, and finally Section 4 gives a summary of the
results.

2. Description of mathematical models

The negative electrode is made up of densely packed lead
particles with a rough surface whose sphericity, φ (defined as
the surface–volume ratio for a sphere of diameter Dp divided by
surface–volume ratio for the particle whose nominal size is Dp)
may approximately be 0.8; because of this, the lead-negative
active material has a network structure on close packing. There
are large numbers of active sites present on the lead particles
of which most nucleate and grow as a result of the reaction
of Pb2+ ions with HSO4− ions from the solution. The rate of
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nates initially. To validate the model’s capability to accu-
ately simulate these effects, model predictions are compared to
xperimental discharge data gathered by using Bitrode’s model
CN2-250-12 [26]. This is a computer-controlled laboratory

est system for measuring discharge capabilities of automotive
nd industrial batteries. LCN circuits have an important place
n research and quality-assurance laboratories testing batteries
o rigorous standards, and enabling the development of new

aterials.
Three different model systems are described based on the

egree of complexity. In all these systems, the unreacted-
ore shrinking boundary is defined, assuming a precipitation–
issolution mechanism. The three possible fields on which
he models are based are: (i) concentration-gradient domain;
ii) potential-gradient domain; (iii) coupled concentration and
otential gradients. The discharge process is governed by a par-
ial differential equation that describes the way that the potential
r concentration of electrochemically active species changes in
he vicinity of the particle as a function of both time and dis-
ance. During the process of computation, possible analytical
olutions are used to enable exact solutions. Unfortunately, ana-
ytical solutions are not available for all the cases of interest.
n that situation, numerical techniques must be used to solve
he model equations. The new separation of variables method
27] is used for solving the model equation that governs the
oncentration-gradient domain. In the other cases, the model
omprised a system of time-dependent reaction-diffusion equa-
ions, coupled through the nonlinear reaction terms with mixed
irichlet and Neumann boundary conditions. To compute the

olutions, the numerical method of lines (MOL) is used. It is
straightforward and effective approach for solving parabolic
rystal growth depends on the over-saturation, temperature, and
lectrolyte concentration. The lead crystals are interconnected
orming a highly porous reactive structure, which is transformed
ully into PbSO4 during discharge. Another part of the crys-
als forms the so-called skeleton structure with small surfaces,
hich is not discharged but ensures an electronic conductive
ath within the electrode. The ratio between both structures
etermines the negative active-material discharge efficiency. The
ischarge process of the negative electrode begins when the
isulphate ion diffuses into an active lead surface; then at the
nterface the lead reacts electrochemically with bisulphate ions
s follows:

b + HSO4
− → PbSO4 + H+ + 2e− (1)

he discharge process is complete when the effective diffusion
ength inside the particle is beyond the diffusion coefficient of
isulphate ions.

The shrinking core model can be introduced to investigate this
ituation, wherein it is hypothetically assumed that the reactive
tructure forms the shrinking Pb cores and the product PbSO4
orms the ash layer. The reaction occurs first at the outer skin
f the particle, then the zone of reaction moves into the solid,
eaving behind a completely converted reactive structure and
n unreacted skeleton structure. Thus, at any time there exists
n unreacted skeleton structure, which ensures the electronic
onductive pathways in the electrode. This model is depicted in
ig. 1 which consists of the following regions and boundary: a
hrinking region of unreacted lead core with the formation of
oorly soluble low-conducting product region and the shrinking
oundary at the interface.
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Fig. 1. Schematic drawing of negative electrode of a lead-acid battery cell according to the shrinking core concept.

The following simplifying assumptions are made regarding
kinetics and transport mechanisms: (i) the acid solution is taken
to be a concentrated binary electrolyte which completely disso-
ciates into HSO4

− and H+ ions, (ii) discharge of Pb to PbSO4
is a dissolution–precipitation process, (iii) constant current is
applied at the surface of the particle, (iv) separability of total
current density into Faradic and non-Faradic current densities,
(v) the lead-negative active material is packed with spherical
lead particles of unit sphericity, (vi) double-layer capacitance,
transfer coefficients and transference number are constants. This
process is modeled in one-dimensional spherical coordinate
based on the different approximations.

2.1. The concentration-gradient domain

Consider a single spherical particle of the porous electrode
as shown in Fig. 1. As the particle is discharged, the core of the
active-material shrinks. Based on the assumptions, the concen-
tration distribution of the bisulphate ions in the product region
is given by:

∂εCA

∂t
= εDeff

r2

∂

∂r

(
r2 ∂CA

∂r

)
(2)

where ε is the porosity of the spherical lead particle, Deff is
the effective diffusivity of the binary electrolyte and it is given
b 0.5

c
o

D

I
t

C

I

C

In Eq. (3), i is the applied current density at the surface; it can
be conveniently expressed in terms of applied current per gram
as follows:

i = I ρ
(4/3)πr3

0

4πr2
0

= Iρr0

3
(6)

Here, I is the applied current density per gram of the active
material and ρ is the density of the particle. Eq. (6) is used to
modify Eq. (3) as:

Deff
∂CA

∂r
= −Iρr0

3nF
(7)

The electrochemical reaction rate at the moving interface is equal
to the mass flux at the interface, thus the motion of interface is
given by:

drc

dt
= −Deff

ρ

∂CA

∂r

∣∣∣∣
r=rc

(8)

The dimensionless variables are defined as follows:

x = r

r0
; xc = rc

r0
; τ = Defft

r2
0

; C = CA

CA0

ρ∗ = CA0 ; I∗ = Iρr2
0

(9)

S

T

y Bruggeman’s relation [30] as Deff = ε D. At the shrinking
ore boundary (rc), the concentration can be expressed in terms
f applied current flux:

eff
∂CA

∂r
= −i

nF
at r = rc (3)

t is assumed that the concentration at the outer surface is equal
o the initial acid concentration, hence:

A = CA0 at r = r0 (4)

nitial condition is given as:

A = 0 at t = 0 (5)
ρ 3nFDeffCA0

ubstituting these dimensionless variables into Eq. (2) gives:

1

x2

∂

∂x

(
x2 ∂C

∂x

)
= ∂C

∂τ
(10)

he initial and boundary conditions becomes:

C = 0 ; τ = 0

C = 1 ; x = 1
∂C

∂x
= −I∗; x = xc

(11)
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and also

dxc

dτ
= −ρ∗ ∂C

∂x

∣∣∣∣
x=xc

(12)

Analytical expressions for the above boundary value prob-
lem can be obtained by using a new separation of variables
method [27]. Let us introduce the following variable transfor-
mation:

C(x, τ) = u(x, τ) + w(x) (13)

Here w(x) satisfies the inhomogeneous boundary conditions:

x = 1; w = 1 (14)

and

x = xc;
dw

dx
= −I∗ (15)

The variable u(x, τ) satisfies the homogeneous boundary condi-
tions and also the initial condition as follows:

x = 1; u = 0 (16)

x = xc;
∂u

∂x
= 0 (17)

u = −w; τ = 0 (18)
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Thus, the final solution is expressed as:

C(x, τ) = 1 + x2
c I∗

(
1

x
− 1

)

− 1

x

∞∑
n=1

An sin[λn(1 − x)] exp(−λ2
nτ) (26)

where

An = 2(xcI
∗ − 1)

λn

(27)

and xc is obtained by integrating Eq. (12) using explicit stepping.
Eq. (26) is the analytical solution for the dimensionless con-

centration as a function of dimensionless distance and discharge
time. Knowing the value of xc, the profiles of concentration
inside the particle can be obtained. Using Eq. (26), the distri-
bution of surface concentration can also be evaluated by set-
ting x = xc. In any electrochemical systems, the electrochemical
behavior is completely determined by the concentration at the
surface [31].

2.2. The potential-gradient domain

Consider the porous electrode models developed by Rangara-
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he transformation given by Eq. (13) changes Eq. (10) to:

1

x2

∂

∂x

(
x2 ∂u

∂x

)
+ 1

x2

∂

∂x

(
x2 ∂w

∂x

)
= ∂u

∂τ
(19)

eparating the variables, we get:

d

dx

(
x2 dw

dx

)
= 0 (20)

nd

1

x2

∂

∂x

(
x2 ∂u

∂x

)
= ∂u

∂τ
(21)

ow w(x) can be solved easily with the boundary conditions to
ive:

(x) = 1 + x2
c I∗

(
1

x
− 1

)
(22)

ence, the solution is given by:

(x, τ) = 1 + x2
c I∗

(
1

x
− 1

)
+ u(x, τ) (23)

ow u(x, τ) is obtained by solving Eq. (21) with the homoge-
eous boundary conditions Eqs. (16) and (17) to give:

(x, τ) = −1

x

∞∑
n=1

An sin[λn(1 − x)] exp(−λ2
nτ) (24)

here An (n = 1, 2, . . .) are constants. An is obtained by imposing
he initial condition Eq. (18) and λn is eigenvalue given by:

an[λn(1 − xc)] + λnxc = 0 (25)
an [32] and Semenenko [17] with regard to potential-gradient
omain. To easily handle this physical reality, assume that at
ny point in space in the electrode we have only the solid reac-
ant, product and electrolyte. Then on an inert free basis the
olume fractions of the three add up to one. A current bal-
nce on an element of volume A dz, across the porous electrode
s:

IεA]z+�z
z = −

∫ z+�z

z

jaεsA dz (28)

here j is the interfacial current density, i.e. the current trans-
erred from the matrix phase to solution phase, I the applied
urrent density, a the surface area per unit volume of the porous
lectrode particle, εs the volume fraction of solid reactant and
the void fraction. Application of the mean value theorems to
q. (28) gives:

∂I

∂z
= −aεsj (29)

onservation of charge requires that the total current density
s the sum of the matrix (i1) and solution (i2) phase current
ensities:

1 + i2 = I (30)

ombining Eqs. (29) and (30), the interfacial current density is
elated to the gradient of current densities as:

ε
∂i1

∂z
= ε

∂i2

∂z
= aεsj (31)
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The interfacial current density is expressed as the sum of the
double-layer charging current density and the Faradic current
density:

j = inF + iF = Cdl
∂(Em − Es)

∂t
+ iF (32)

Cdl is the double-layer capacitance. The kinetic behavior of a
lead electrode in the lead-acid battery during discharge has been
presented by Ekdunge and Simonsson [11] and the Faradic cur-
rent density, iF, is written as follows:

iF = i0

(
1 − Q

Qmax

)
1 − exp[(αa + αc)(F/RT )(Em − Es)]

(ai0/ilim) − exp[αc(F/RT )(Em − Es)]
(33)

Here the limiting current density ilim affects significantly the
polarization curves and is determined from the dissolution rate
of lead, the diffusion rate of lead ions and the precipitation rate
of lead sulfate crystals (ilim = −2.5 × 104 A m−3). The electro-
chemically active area ‘a’ can be related to the state of discharge
as:

a = amax

(
Q

Qmax

)S

and
dQ

dt
= 1

2F

(
di2

dz

)
= 1

2F
j (34)

where amax denotes the active surface area of the electrode at the
f
t
r

d
O

i
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w
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σ

κ

C
b

t

Differentiating Eq. (35) and substituting in Eq. (31) gives the
governing equation for the solid-phase potential:

σeff
∂2Em

∂z2 = aεsj (40)

Similarly, the governing equation for the solution-phase poten-
tial is given by combining Eq. (31) and differentiation of Eq.
(36):

κeff
∂2Es

∂z2 = aεsj (41)

The overpotential is given by η = Em − Es when the open-circuit
potential is set equal to zero. For a constant value for the open-
circuit potential (E �= 0) the quantity (Em − Es) in Eq. (33), and
consequently in the following expressions should be replaced
with η = Em − Es − E. Based on this definition of the overpo-
tential, the governing equation for potential distribution inside
the spherical particle can be expressed as second-order non-
linear partial differential equation using Eqs. (32), (40) and
(41):

1

r2

∂

∂r

(
r2 ∂η

∂r

)

=
(

1

σ
+ 1

κ

)[
aεsCdl

∂η

∂t
+ aεsi0

(
1 − Q

Q

)

T

η

T

η

−

η

r
t
i

L

η;

2
0

[
σ

t

ully charged state, Q the charge density in the electrode, Qmax
he theoretical maximum capacity, and S the shape factor which
elates the state of discharge with the surface area.

With no concentration gradients, the matrix-phase current
ensity, i1, and solution-phase current density, i2, are given by
hm’s law [33]:

1 = −σeff
∂Em

∂z
(35)

2 = −κeff
∂Es

∂z
(36)

here σeff and κeff are the effective matrix-phase and solution-
hase conductivities, respectively. Bruggeman’s relation [30] is
sed to determine the effective parameters of the porous elec-
rode from the bulk values:

eff = (1 − ε)1.5σ (37)

eff = ε1.5κ (38)

hanges in porosity can be equated to volume differences
etween solid products and reactants resulting from the local

ransfer current, and may be expressed by:

∂ε

∂t
= 1

2F

[
MPb

ρPb
− MPbSO4

ρPbSO4

]
j (39)

x = r

r0
; xc = rc

r0
; η∗ = F

RT

I∗ = F

RT

r0

κeff
I; J = F

RT
aεsr
eff eff max

× 1 − exp[(αa + αc)(F/RT )η]

(ai0/ilim) − exp[αc(F/RT )η]

]
(42)

he initial condition is:

= 0 at t = 0

he boundary conditions are:

= η0 at r = r0 (43)

∂η

∂r
= I

κeff
at r = rc (44)

0 is the overpotential at the surface of the particle. Since the
ate of electrochemical reaction at the interface is proportional
o the applied current, using Faraday’s law the motion of the
nterface is given by the current flux at the interface:

drc

dt
= − κeff

nFρ

∂η

∂r

∣∣∣∣
r=rc

(45)

et us introduce the following dimensionless variables:

τ = t

aεsCdl[(1/σeff) + (1/κeff)]r2
0

1

eff
+ 1

κeff

]
i0; I∗

0 = i0

ilim
; q = Q

Qmax

(46)

hen the equations can be written in dimensionless form as:

1

r2

∂

∂r

(
r2 ∂η∗

∂r

)
= ∂η∗

∂τ
+ J(1 − q)

1 − e(αa+αc)η∗

I∗
0 − eαcη∗ (47)
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with the initial and boundary conditions:

η∗ = 0; τ = 0 (48a)

η∗ = η∗
0; x = 1 (48b)

−∂η∗

∂x
= I∗; x = xc (48c)

and interface position as:

dxc

dτ
= − ∂η∗

∂x

∣∣∣∣
x=xc

(49)

Since the reaction kinetics is represented by nonlinear source
terms, the search for analytical solutions is not possible. The
Eqs. (47)–(49) have to be solved numerically. Nevertheless, ana-
lytical solutions are the best if available or can be obtained. For
this reason and to force the parameters in a correct direction that
gives the best results with the certainty that they correspond with
physical reality. The analytical solution is achieved by replacing
the nonlinear source terms by means of linearized kinetics. Then
this expression is used in aiding the numerical computation of
above nonlinear PDE using the MOL.

Suppose that the overall discharge current density is not very
high, and suffice it to restrict the calculation to linear members
of the exponent expansion in Butler–Volmer kinetics within a
T
t
p

w
o
v

η

T

w

N
t
t

η

where,

An = 2(xcI
∗ − η∗

0)

λn

(55)

and λn is obtained by using the Eq. (25).
The numerical procedure for solving the actual nonlinear

problem Eq. (47), using the boundary conditions Eq. (48) and
linearized analytical solution Eq. (54) are given in Section 3.

2.3. Coupled concentration and potential gradients

By taking into account the charge-transfer reaction, charg-
ing and discharging of the electric double-layer at the interface,
changes in porosity, and specific surface area and charge con-
serv ation reaction, the material balance for the bisulphate ion
Eq. (2) can be rewritten as:

∂εCA

∂t
= εDeff

1

r2

∂

∂r

(
r2 ∂CA

∂r

)

+ a(1 − 2t0
+)jn + aCdl(1 − 2t0+)

nF

∂η

∂t
(56)

where t0+ is the transference number of bisulphate ions in the
solution and jn the pore wall flux of ions across the inter-
face between the electrolyte and the active material. For a
d
t
i
s
o
f

i

w
C
o
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C
o
t

F
t

aylor series. Then the Faradic current density (iF) is given by
he linearized Butler–Volmer kinetics [34]. Based on this sim-
lification, Eq. (47) becomes:

∂2η∗

∂x2 + 2

x

∂η∗

∂x
= ∂η∗

∂τ
+ Jη∗ (50)

ith the same boundary conditions Eq. (48). With the intention
f converting the PDE Eq. (50) to a solvable form, the following
ariable transformation is applied.

¯∗ = η∗ exp(Jτ) (51)

hen the problem becomes:

1

x2

∂

∂x

(
x2 ∂η̄∗

∂x

)
= ∂η̄∗

∂τ
(52)

ith the boundary conditions:

η̄∗ = 0; τ = 0

η̄∗ = η̄∗
0; x = 1

−∂η̄∗

∂x
= I∗ exp(Jτ) ; x = xc

(53)

ow applying the same procedure as followed in Section 2.1,
he final analytical solution for the above Eqs. (52) and (53) after
ransforming back to η* is given by:

∗(x, τ) = η∗
0 + x2

c I∗
(

1

x
− 1

)

−1

x

∞∑
n=1

An sin[λn(1 − x)] exp(−λ2
nτ) (54)
issolution–precipitation mechanism, it is assumed that the elec-
rode reactions in the negative electrode consists of three steps,
.e., dissolution of lead sulfate, diffusion of lead ions to the active
ites, and precipitation of lead [11], by including the dependence
f the electrolyte concentration the Faradic current is written as
ollows:

F = jnF = i0

(
1 − Q

Qmax

)(
CAs

CA0

)γ

× 1 − exp[(αa + αc)(F/RT )η]

ai0/ilim − exp[αc(F/RT )η]
(57)

here γ is the exponent for the concentration dependence and
s the surface concentration, the concentration at the interface
r shrinking boundary (γ = 0.01). The variation in the porosity
nd specific surface area are given by Eqs. (34) and (39). Due
o the existence of concentration gradient, the solution-phase
otential is governed by modified Ohm’s law as:

2 = −κeff
∂Es

∂x
+ 2RTκeff

FCAi
(1 − 2t+0 )

∂CA

∂x
(58)

Ai is the concentration of bisulfate ions in the solution phase at
pen-circuit conditions. Incorporating the modified Ohm’s law,
he potential distribution Eq. (47) can be rewritten as follows:

1

r2

∂

∂r

(
r2 ∂η

∂r

)
=
(

1

σeff
+ 1

κeff

)[
aεsCdl

∂η

∂t
+ aεsiF

]

−2RTκeff(1 − 2t+0 )

FCAi

∂CA

∂r
(59)

or both the dependent variables (concentration and overpoten-
ial), initial and boundary conditions are the same as discussed in
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Table 1
Dimensionless variables [35]

Dimensionless parameters Definition

ν2 ai0Fn
RT

(
1

σeff
+ 1

κeff

)
r2

0

B1

(
F2εCAi

RT (1−2t0+)

)
1

aCdl

B2

(
F2εCAi

RT (1−2t0+)

)
Deff

(
1

σeff
+ 1

κeff

)

the previous sections. Introducing the following dimensionless
dependent variables:

C = CA

CA0
and η∗ = F

RT
η (60)

and the dimensionless independent variables:

x = r

r0
and τ = t

aεsCdl
[
(1/σeff) + (1/κeff)

]
r2

0

(61)

Eqs. (56) and (59) can be written in dimensionless form as fol-
lows:

1

x2

∂

∂x

(
x2 ∂C

∂x

)
= B1

B2

∂C

∂τ
− ν2

B2
C(1 − q)

1 − e(αa+αc)η∗

I∗
0 − eαcη∗

− 1

B2

∂η∗

∂τ
(62)

1

x2

∂

∂x

(
x2 ∂η∗

∂x

)
= ∂η∗

∂τ
+ ν2C(1 − q)

1 − e(αa+αc)η∗

I∗
0 − eαcη∗

− 2(1 − 2t0
+)

∂2C

∂x2 (63)

where ν2, B1 and B2 are dimensionless groups defined in Table 1.
The boundary conditions in dimensionless form then become:

a

E
E

3

u
t
[

Table 2
Model parameters used for simulation of discharge process of a lead particle
inside the lead-acid battery

Parameters Values Reference

Initial acid concentration, CA0 0.00504 mol cm−3 [18]
Diffusion coefficient of H2SO4, D 2.59E−5 cm2 s−1 [18]
Capacity, Q 257 mAh g−1 [11]
Exchange current density, i0 1.41 mA g−1 [12]
Charge-transfer coefficient of Pb

electrode
αa = 1.55, αc = 0.45 [12]

Thermodynamic potential of lead, E0 −0.35 V [19]
Cut-off potential, Ec −0.20 V [19]
Void fraction, ε 0.6 [11]
Volume fraction of solid reactant, εs 0.4 [11]
Shape factor, S 0.95 [7]
Radius of the particle, r0 3 �m [11]
Discharge rate 257 mAh g−1 (I* = 1.4) [11]
Solution-phase conductivity, κ 2300 S cm−1 [11]
Solid-phase conductivity, σ 4.8E4 S cm−1 [11]

and also graphical mathematical computations. The computa-
tional procedures are executed using the base value given in
Table 2.

3.1. Effect of applied current density on shrinking interface

The values of the first five eigenvalues are obtained by set-
ting xc equal to a value (say 0.99) and solving Eq. (25). Then
this computation is repeated by giving a decrement of 0.01 till
xc reaches zero. Given the first five eigenvalues as a function of
dimensionless interface position, Eq. (12) is integrated numeri-
cally by explicit stepping. This step can be implemented using
the following explicit relation and specifying a value for �τ.

xc(τ + �τ) = xc(τ) + �τ

(
ρ∗ ∂C

∂x

∣∣∣∣
x=xc

)
(67)

Here xc = 1 at τ = 0, the concentration gradient in Eq. (67) is
obtained from Eq. (26) for any specified value of dimension-
less applied current density. The same procedure is followed
in potential-gradient domain to obtain the shrinking interface
position as a function of discharge time. In this case, Eq. (49) is
integrated with the initial condition and the gradient is obtained
from Eq. (54). But the eigenvalues remain the same for both the
cases. For a particular value of τ, C and η are solved by using
M

t
d
e
g
v
f
c
s
b
d
t

at x = 1 η∗ = η∗
0

C = 1
(64)

at x = xc −∂η∗

∂x
= I∗

−∂C

∂x
= I∗

(65)

nd the initial condition is:

at τ = 0 η∗ = 0

C = 0
(66)

qs. (62) and (63) have to be solved simultaneously subject to
qs. (64)–(66).

. Results and discussions

Very often, analytical solutions involve integrals, eigenval-
es, etc., which must be evaluated numerically. Hence the solu-
ion procedures are programmed in a symbolic language: Maple
36]. This software allows many numerical techniques, symbolic
aple’s fsolve command.
Fig. 2 shows the dimensionless interface position as a func-

ion of dimensionless time at various levels of applied current
ensity (I*). It represents the results obtained from the analytical
xpressions derived for both concentration as well as potential
radients domain. For an applied current density (I* = 0.5), at
ery low times, the interface position is almost near the sur-
ace of the particle, i.e., close to r0. As the time increases, the
ore radius shrinks. However, at higher applied current den-
ity (I* > 1.0) the core radius shrinks very fast right from the
eginning of discharge process. This is true because at high
ischarge rates, the particle discharges faster; thus, concentra-
ion or potential gradient values are high. The slope decreases
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Fig. 2. Dimensionless shrinking core radius as a function of dimensionless dis-
charge time for two different models, — Eq. (49), – – – Eq. (12).

gradually. Also it can be observed that the shrinking core posi-
tion is much less when compared with discharge at low rates.
As can be seen in the plot, the concentration gradients domain
model under predicts the time for the unreacted core to shrink,
but for low values of the parameter both the models nearly
coincide. This is not surprising because the former model is
only a measure of mass-transport behavior and acid availability
within a porous lead particle, which has been reasonably well
modeled.

3.2. The concentration and potential distributions

The analytical solution given by Eq. (26) depends on xc and
time, τ. Consequently, to obtain C(x, τ) for given parameter
values, first step is to know the value of xc as a function of
discharge time. This can be obtained from the previous plot
between the dimensionless interface position and discharge time
for any value of I*. Then Eq. (26) can be easily solved to get the
profiles of dimensionless concentration distribution as a function
of dimensionless discharge time. Maple’s fsolve command can
execute this computation readily.

But to evaluate the profiles of dimensionless potential distri-
bution, the nonlinear PDE Eq. (47) has to be solved using the
boundary and initial conditions Eq. (48) along with Eq. (49). For
this purpose the numerical MOL is used. It is a general technique
for solving nonlinear PDEs by typically using finite difference
r
e
s
d
s
o
x
n
g

�

Thus, for 10 equally spaced intervals we have n = 11 internal
node points. Now it is required to seek expressions for the depen-
dent variable at all the 11 node points (η1, η2, η3, . . ., η11). The
boundary condition at x = xc (Eq. (48c)) can be rewritten using
a first-order finite difference as:

−η∗
2 − η∗

1

�x
= I∗ (69)

This can be solved for η1 to yield:

η∗
1 = η∗

2 + �xI∗ (70)

and the boundary condition at x = 1 (Eq. (48b)) gives,

η∗
11 = η∗

0 (71)

The particle is initially held at zero potential. This gives the
initial condition that all the interior node potentials are known
at time τ = 0.

η∗
n = 0 for n = 2, . . . , 10 at τ = 0 (72)

The dependent variables at the interior node points (η2, η3, η4,
. . ., η10) satisfy the governing Eq. (47) with the second derivative
in x expressed in three-point central difference form accurate to
the order (�x)2 are

dη∗
n = η∗

n+1 − 2η∗
n + η∗

n−1 + 2(η∗
n+1 − η∗

n)

T
a
o
o
a
i
s
s
t
d
e
a
I
c
s
t
a
e

d
t
e
t
i
w
t
i

elationships for the spatial derivatives and ordinary differential
quations for the time derivative. The method proceeds in two
eparate steps: (i) spatial derivatives are first replaced with finite
ifference approximations, (ii) the resulting system of usually
tiff, semi-discrete (discrete in space and continuous in time)
rdinary differential equations is integrated in time. Thus the
-axis is discretized into N equal intervals, so that there are
= N + 1 internal node points. The step-size in x-axis is then
iven by,

x = 1 − xc

N
(68)
dτ (�x)2 n(�x)2

− J(1 − q)
1 − e(αa+αc)η∗

I∗
0 − eαcη∗ for n = 2, . . . , 10 (73)

hus using the MOL, the nonlinear system has been reduced to
n ODE system in time. The problem then requires the solution
f Eqs. (70), (71) and (73) which results in nine simultane-
us nonlinear ordinary differential equations and two explicit
lgebraic equations for the 11 unknown potentials at the var-
ous nodes. To solve this stiff system, one can use the dsolve
olver in Maple with automatic step-size and order control with
tiff equal to true option that is suitable to capture the ini-
ial transient layer both accurately and efficiently. The finite
ifference semi-discretization involves integrals of the nonlin-
ar reaction terms on the right hand side of Eq. (73). Usu-
lly, these integrals would require a numerical approximation.
nstead, we take advantage of the special form of the dsolve
ommand by setting stiff equal to true. When this method is
pecified, a consistency check is also performed to verify that
he method matches with the stiff value. The technique is both
ccurate and simple in solving the problem Eqs. (70)–(73)
ffectively.

Figs. 3 and 4 show the converged concentration and potential
istributions, respectively, as a function of different discharge
ime for an applied current density, I* = 2.5. The plot of the
lectrolyte-concentration profile at different stage of discharge
ime (Fig. 3) provides us with information on the availabil-
ty of the acid for the electrode reaction. The profiles indicate
hether acid depletion is limiting the capacity of the cell. For

he present case bisulphate ions depletion at the shrinking core
s definitely a limiting factor. The bisulphate ions depletion at
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Fig. 3. Dimensionless concentration profiles for the electrochemical reaction as
a function of radial distance and discharge time due to applying a dimensionless
current density, I* = 2.5.

the shrinking interface is very difficult to measure experimen-
tally during rapid discharge. But an interpretation of this process
is achieved from the solution of developed model equations. It
is apparent from this figure that the bisulphate ions concentra-
tion near the surface of the particle is close to unity at very
low times. As time increases, the bisulphate ions concentration
depletes very fast and the core shrinks leading to the end of
discharge. The effect of maintaining the concentration constant
at this point in effect assumes a well-stirred acid recirculation
of electrolyte at a practical temperature. In a single electrode,
this is made possible by placing the electrode in a large volume
of acid and maintaining a well-stirred solution. In a typical cell
stack, only density differences, volume changes, and gassing
promote stirring and contact with remote acid volumes. There-
fore, in a normal cell stack, without forced electrolyte flow, the

F
r

performance of the cell will be greatly affected by the vol-
ume of solution contained between the densely packed lead
particles.

The degree of polarization across the thickness of an elec-
trode particle is the η* profiles. For the present case, Fig. 4
indicates that the polarization of the negative particle is rela-
tively unchanged during the initial stages of discharge. Towards
the end of discharge, the degree of polarization becomes more
uniform. The acid concentration may play a role in the difference
between the high- and low-polarization profiles. As bisulphate
ions depletion begins to become significant, the potential drops.
But it is maintained to some extent in the particle due to high dif-
fusivity. With increasing discharge time the potential decreases
on approaching the particle center. Thus, in usual conditions,
the particles are presumably small, the discharge occurs at a
uniform distribution of potential inside them, the reaction rate is
the same across the particle bulk and it is much simpler to model
the discharge process.

3.3. Discharge curves

The model equations in concentration-gradient domain can
be used to obtain the discharge curves by expressing the kinetics
at the surface as:

I

(
Q

)(
CS
)γ 1 − exp[(αa + αc)(F/RT )η]

w
e
g

E

T
a
u
(
b
η

p
m
t
o
i
u
h

S

I
d
s
(
c
f

ig. 4. Dimensionless potential distributions along the particle distance as a
esult of applying a dimensionless current density, I* = 2.5.
= I0 1 −
Qmax CA0 ai0/ilim − exp[αc(F/RT )η]

(74)

here Cs is the dimensionless surface concentration and I0 the
xchange current per unit mass. The potential at the surface is
iven by:

(V ) = E0 + η (75)

he above two equations are used to predict the discharge curves
nd the procedure consists of first setting I and the parameter val-
es, followed by solving the governing equations to obtain Eq.
26), and hence Cs(τ) by setting x = xc. Next, once values have
een set for I0, E0, α, and τ, Eq. (74) can be used to solve for
(τ), which upon substitution into Eq. (75) yields E(τ). For a
articular time τ and Cs, η is solved using Maple’s fsolve com-
and. Once the overpotential η is found, Eq. (75) is used to find

he potential. This procedure is repeated until a cut-off potential
f Ec = −0.2 V is reached. For the case of the model equations
n potential-gradient domain, η(τ) can be obtained directly by
sing the Eqs. (70)–(73). The state of discharge (SOD) is defined
ere as:

OD = I(current applied, A g−1) × t(s) × 100

Q(capacity, Ah g−1) × 3600
(76)

n the case of the coupled concentration and potential gradients
omain, the model equations Eqs. (62)–(66) are solved using the
ame numerical MOL as demonstrated in Section 3.2 for Eqs.
47) and (48). Here additionally one more set of equations in con-
entration domain are to be solved. The final semi-discretized
orm of the governing equations in concentration domain is
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expressed as:

C1 = C2 + �xI∗

−1

B2

dη∗
n

dτ
+ B1

B2

dCn

dτ

= Cn+1 − 2Cn + Cn−1

(�x)2 + 2(η∗
n+1 − η∗

n)

n(�x)2 + ν2

B2
Cn(1 − q)

× 1 − e(αa+αc)η∗
n

I∗
0 − eαcη∗

n
for n = 2, . . . , 10, C11 = 1 (77)

with the initial condition Cn = 0 for n = 2, . . ., 10 at τ = 0 and
in potential domain it is given by (by assuming Ohm’s law for
solution-phase potential):

η∗
1 = η∗

2 + �xI∗

dη∗
n

dτ
= η∗

n+1 − 2η∗
n + η∗

n−1

(�x)2 + 2(η∗
n+1 − η∗

n)

n(�x)2 − ν2Cn(1 − q)

× 1 − e(αa+αc)η∗
n

I∗
0 − eαcη∗

n
for n = 2, . . . , 10, η∗

11 = η∗
0 (78)

and also η∗
n = 0 for n = 2, . . ., 10 at τ = 0.

The above two set of equations are strongly coupled nonlin-
ear ODEs. All these equations can be integrated simultaneously
u
c
b
s
r
F
b
d
f
i
m
d

F

Fig. 6. Comparison of theoretically predicted and experimental discharge
curves. SOD, state of discharge.

(77), one can easily obtain the η(τ), and hence the SOD with
minimal computational effort.

Three numbers of 2 V/64 Ah10 Planté type lead-acid cells
with flat negative plates were discharged in series using the
Bitrode’s model LCN2-250-12 at a current of 6.4 A equivalent
to 10 h rate of discharge. The negative plate potential was mon-
itored using a cadmium reference electrode and the values are
converted to SHE reference, taking the E0 value of the Cd/Cd2+

as −0.40 V. The data are acquired with a computer-controlled
data acquisition system. Although the collected data are rather
extensive, comparisons of the measured data with the three dif-
ferent models are shown in Fig. 6. The agreement between
experiment and theory appears reasonably good. In particular
the agreement is superior for the third model comparing with
the first two models; here we see more of a difference between
the experimental and predicted curves due to much simplifica-
tion in model equations. Careful inspection of the experimental
data might suggest a slight deviation than would be theoreti-
cally predicted. At a given discharge rate, the theoretical lies
above the experimental in the initial portion of discharge and
crosses over the experimental curve near the end of discharge.
The initial drop in the experimental discharge curve is generally
attributed to super saturation of PbSO4 in sulfuric acid solutions.
This effect is not included in the model. A partial explanation of
the higher predicted voltage lies in the uncertainty in the anodic
charge-transfer coefficient of the Pb electrode, as well as in the
u
t
a
a

f
e
t
t
t

sing a convenient ODE solver package such as Maple’s dsolve
ommand. On the other hand, the surface concentration distri-
ution obtained from the analytical solution Eq. (26) can be
ubstituted directly in Eq. (77) to get the η(τ). This procedure
equires only one set of semi-discretized equations to be solved.
ig. 5 shows the dimensionless surface concentration distri-
ution in the active particle as a function of applied current
ensity. As expected, the surface concentrations depleted faster
or higher rates. Also, we observe that the discharge time, which
s the time taken for surface concentration to reach approxi-

ately zero, is highly dependent on the dimensionless current
ensity. When these data are effectively utilized in place of Eq.

ig. 5. Surface concentration variation during the course of discharge reaction.
ncertainty in the value of exchange current densities of the elec-
rodes. Considering the possible magnitude of the errors, there
ppears to be reasonably good agreement between experiment
nd theory.

Fig. 7a shows the discharge curves at different discharge rates
or both the cases of with and without double-layer charging
ffect. During discharge, the shrinking interface where the elec-
rochemical reaction takes place moves from the outer surface
owards the center of the electrode. Therefore, the length of
he current path in the electrolyte-filled pores increases with
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Fig. 7. (a) The discharge curves obtained at different discharge rates. (b) The
corresponding results with Cdl = 0. (Discharge curve with marker × represents
C/10 rate, marker � represents C/2 rate, marker � represents C rate, marker �
represents 2C and marker • represent 3C rate.)

depth-of-discharge. For higher discharge rates the particle dis-
charges fast, and E reach −0.2 V in lesser time. It is due to the
fact that the effective conductivity of the electrolyte in the dis-
tance between the particle surface and the reaction zone does not
offer any additional resistance. This plot also shows the results
when ignoring the double-layer capacitance. The study of elec-
trical double-layer is important because the charge distribution
in a given system influences the electron transfer, and thus the
course of electrochemical reaction. The non-Faradic contribu-
tion is very high during the beginning of discharge process due
to the charging of double layer and equilibrium concentration.
Fig. 7b shows that double-layer charging has an impact over the
process till the discharge termination.

It is observed from the above investigation that the predicted
SOD of the particle with shrinking core concept is closer to the
experimental data at high discharge rates, i.e., rate more than
C/10. But at lower rates these are much less than the experimental

data. Thus, for predicting the utilization factor accurately, espe-
cially at high discharge rates the shrinking core model should
be used.

4. Conclusions

A theoretical model for the porous lead electrode is proposed
on the basis of the unreacted-core shrinking model used for
the fluid-particle reactions. From this investigation it is obvi-
ous that the shrinking core cannot be ignored in porous lead
particles discharging at the negative plate of lead-acid batteries.
As expected, the models state that for higher discharge rates
the particle discharges faster (E reach −0.2 V in less time). At
the end of discharge a layer of lead sulphate crystals blocks the
electrode surface in the outer layers of the electrode. The current
can then neither be transferred across this insulated surface nor
reach remaining active material in the inner parts of the electrode
because of acid depletion. This situation is furthermore accel-
erated by the decreasing porosity and electrochemically active
area. In this account an analytical expression is achieved, and the
calculations show that quite remarkable concentration gradients
are possible in such electrode. It is also observed that the time
needed to reach the steady state is much longer than what was
expected. When the coupled potential and concentration gradi-
ents are considered, this discharge time is beyond the supposed
d
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b
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ischarge time.
The concentration gradients domain model with an analyti-

al solution can only be an average model for the negative plate.
owever, it has the merit to give a better understanding of the

undamental problems than with a pure computer simulation. In
he next two models, the number of parameters to be estimated is
arge. Thus the numerical MOL is adopted to solve these model
quations. The partial derivatives are discretized in the radial
irection, and the resulting ODE system is integrated in time
sing a convenient solver packages. The parameters are forced
opefully in a better direction using a simplified analytical solu-
ion.

Using these models, different valuable results can be
btained. Such knowledge would allow suggesting modifica-
ions in a system to obtain desired changes. Also this model
ould help in advanced development of a system by providing a
uick means of examining the effects of various parameters on
he system’s performance. The study has good scope in optimiz-
ng the concentration and potential profiles. The optimization
rocess will also assist in extending the lifetime of a lead-acid
attery.
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